
Distributed Application Management using Jini
Connection Technology

The Jini Technology Enabled Applications Manager provides a
framework, utilizing Jini and JavaSpaces technologies, for
selecting and submitting native (i.e. not Java technology based)
applications onto one of a set of compute resources, and for
monitoring and controlling the resultant running jobs. The
applications, compute resources, and running jobs are abstracted as
Jini services.

The architecture illustrates the effectiveness of the Jini technology
service model for abstracting both hardware (compute resources) and
software (applications) as services on a network.

 Page 1

Copyright 2000 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, CA 94303−4900 U.S.A. All rights reserved.

This product or document is distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this
product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third−party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, AnswerBook2, docs.sun.com, Solaris, Java, Jini, and JavaSpaces are trademarks, registered
trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license
and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC
trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun? Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non−exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers
Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software−Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NON−INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE
HELD TO BE LEGALLY INVALID.

Copyright 2000 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, CA 94303−4900 Etats−Unis. Tous droits réservés.

Ce produit ou document est distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la décompilation.
Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la
technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une
marque déposée aux Etats−Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, AnswerBook2, docs.sun.com, Solaris, Java, Jini, et JavaSpaces sont des marques de fabrique ou
des marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats−Unis et dans d’autres pays. Toutes les marques
SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats−
Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc

L’interface d’utilisation graphique OPEN LOOK et Sun? a été développée par Sun Microsystems, Inc. pour ses utilisateurs et
licenciés. Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation
visuelle ou graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation
graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN
LOOK et qui en outre se conforment aux licences écrites de Sun.

LA DOCUMENTATION EST FOURNIE "EN L’ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES
EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE,
Y COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A
UNE UTILISATION PARTICULIERE OU A L’ABSENCE DE CONTREFAÇON.

 Page 2

Introduction
The Applications Manager (hereafter called "JAM", for Jobs & Applications Manager) is
a tool for selecting and submitting applications onto one of a set of compute resources
and monitoring and controlling the resultant running jobs. The applications, compute
resources, and running jobs are reflected as Jini connection technology services. JAM
targets High Performance Computing (HPC) applications, which generally consist of
native (not Java technology based1), compute−intensive codes. These codes generally
run on one machine or a cluster of machines with each such compute resource abstracted
at the Jini service level as one or more queue services that interact with an underlying
native resource management system (RMS) such as Sun Grid Engine or Platform
Computing’s LSF. These queue services reflect the queue structure of the underlying
resource management systems.

The JAM architecture has been developed as part of a collaborative effort between Sun
Microsystems and the Swiss Center for Scientific Computing.

This paper presents an overview of the requirements for JAM along with a description of
the JAM architecture.

Goals and Objectives
The JAM architecture provides a framework within which applications can be selected,
launched, monitored and controlled in a unified manner, independent of the application
or the properties of the compute resources and their respective resource management
systems.

JAM can also be thought of as implementing aspects of a distributed resource
management system. It provides a mechanism whereby a user can select an application
from among a well−known set, and based on resource requirements both intrinsic to the
application as well as supplied externally by the user, be presented with a list of
candidate queues to which the user can choose to submit the application for execution.
These JAM queues are associated with underlying computational resources that are
themselves managed by native resource management systems. These computational
resources are likely to be distributed both geographically and organizationally. Once the
application has been queued to the underlying resource management system and it has
launched their job, the JAM architecture allows that job to be monitored and controlled.
This is all accomplished within JAM’s unified framework.

This unifying framework provides a computing environment within which users are
provided a simple, yet effective method for selecting from a set of available compute
resources to run their applications. In addition, once a compute resources has been
selected users are not exposed to the vagaries of the potentially differing resource

1 There is nothing in the architecture of JAM that specifically rules out its use for Java−based jobs,
though some optimizations would be logical to consider for remote submission of such jobs (e.g.
utilizing Java’s dynamic classloading to make the code available at the target machine). We have not
specified or implemented any such optimizations.

 Page 3

management systems controlling those resources. In essence, JAM allows users to utilize
a set of potentially heterogeneous compute resources by presenting a resource
independent, application level interface to the user.

Base Technologies
The two key technologies exploited in the JAM architecture are Jini technology and
JavaSpaces technology. We discuss here only those salient features of these
technologies that are helpful to understanding the architecture of JAM.

Jini Connection Technology

Given the distributed nature of JAM, it seems natural to take advantage of the distributed
service model provided by Jini technology as the key abstraction for applications, jobs,
and compute resources to allow these objects to register and interact with each other.
The use of the Jini service model for interacting with application, queues and jobs
provides the following benefits:

" The Jini distributed model meshes well with the distributed nature of JAM’s
applications and compute resources

" The Jini discovery model allows applications, compute resources, and jobs to be
dynamic; changes in their state are spontaneously reflected in the lookup service

" The Jini infrastructure provides the necessary robustness and error models needed in
a distributed system like JAM

An important aspect of Jini technology is the service proxy model. When a service
back end registers itself with a Jini lookup service, part of what is registered is a
service proxy object. This service proxy is downloaded to the client performing a lookup
for the service. The proxy contains the code which implements the interface between the
client and the service: the client’s sole interaction with the service is via this service
proxy. Another way to think of this is that the service provides its own driver, which is
downloaded on demand and instantiated in the client.

Depending on the design of the particular service, the service proxy may or may not
communicate with its service’s back end, or other remote objects. The client doesn’t
know or care about this; it represents implementation details of the service.

JavaSpaces Technology

JAM also makes extensive use of JavaSpaces technology for handling and keeping
track of submitted jobs as they progress through their life cycle. JavaSpaces
technology provides a shared object store, along with notification capabilities, to provide
a framework supporting loosely cooperating, distributed programming. This maps well
to the distributed way in which JAM jobs are launched, monitored and controlled.

 Page 4

JavaSpaces services are Jini services, and implementations are provided as part of
the Jini technology SDK from Sun. We utilize a private instantiation of a persistent
JavaSpaces service implementation which we term a Job Repository.

JAM Architecture
We now describe the architectural components of JAM. First, we describe the services
which make up the core of JAM: applications, queues, jobs and the Job Repository
(JavaSpaces service). We then discuss the supporting components of the architecture,
including the client−side code that integrates it all. Figure 1 shows a high−level
overview of JAM’s various components.

Figure 1: Overall JAM Architecture

 Page 5

Jini Federation

Job Repository
JavaSpaces service

JavaTM/JiniTM

C/C++

RMS Adapter

JNI Wrapper

SunTM Grid
Engine

Queue Service

Job Service

App. Service

App. Svc.
Proxy

Queue Svc.
Proxy

Job Svc.
Proxy

Client
App. Agent Rep.

JavaSpaces service

Applications
There are two classes of applications supported by JAM.

Pre−registered applications: These are specific applications that have had Jini service
wrappers generated for them, and that have been made known to JAM. For example, a
commercial HPC code (NASTRAN, ANSYS, etc.) could have a Jini service wrapper
written for it, making it available to submit via JAM.

User−defined application: This class represents applications which are specified by the
user via a template that is registered with JAM.

There is a Jini service associated with the user−defined application, as well as one for
each pre−registered application. The entirety of the application service is implemented
within its service proxy. There is only a skeletal service back end for handling
registration, leasing and administrative duties.

Registered applications are made available for selection by the user, as shown in Figure
2.

Figure 2: Queue service registration; Application Selection
 Page 6

JiniTM Federation Application 1

Select One:
Application 1
Application 2
User Defined

Application 2

User Defined

App Selection
Panel

" Client does lookup of all Application
 types
" Provides selectable list for user
" User makes a selection

Queue A

Queue B

Queue C

" Queue Service does lookup of
 JavaSpaces service; includes
 reference in registered Queue proxy

Job Repository
(JavaSpacesTM service)

App 1 Proxy

U.D. Proxy

App 2 Proxy

Each application service includes a user interface pane for entering application and
resource parameters. The application parameters include those which are application−
specific, and therefore different for each registered application, and those which are
application−independent and common to all applications in JAM. Applications can
provide their own hard−coded values for any of the application−independent parameters,
in which case, the user is not able to set or change the value.

The resource parameters are independent of both applications and resource managers;
they represent attributes that are abstracted by all registered queue services, including
both queue− and machine−level attributes.

Included within each application’s proxy is an Application Agent. Its function is to
perform filtering and optional ranking of the available queue services. There are two
levels of filtering supported by the agent. The first utilizes Jini technology’s attribute−
matching lookup semantics to filter available queues based on the resource parameters
entered by the user into the application service’s user interface pane. The second,
optional method involves application−specific evaluation code for further refining and
ranking candidate queue services. This evaluation code is written to an Application
Agent repository and run within the back−end of each queue service, providing an
application−specific method for intelligent queue filtering and ranking. Since this code
is run within the context of each queue service’s back−end, it enables different filtering
and ranking semantics (e.g. range checking) than is possible with standard Jini attribute
matching.

This queue filtering occurs dynamically. As the user enters resource parameters, the list
of candidate queue services being displayed is updated to match. Conversely, if the
status of a queue service changes (either due to a change in value of one of its service
attributes, or due to the service itself being removed or added) the queue service list is
adjusted as appropriate to reflect this new information. This functionality is provided by
the Jini infrastructure.

Job Repository JavaSpaces  Service

The Job Repository is central to the architecture of both queue services and job services.
All aspects of job submission, monitoring and control are handled through interactions
with this private JavaSpaces service instantiation. Every job submitted to JAM is
represented by a job descriptor within the Job Repository. Modifications to the job
descriptors stored in the Job Repository trigger events in other JAM components, as
described in the following sections.

RMS Adapter

The RMS Adapter is used to communicate between the Job Repository and the native
resource management system. It is divided into two logical levels. The upper half of the
Adapter is independent of the underlying native resource management system. It deals
with making necessary modifications to the job descriptions in the Job Repository and

 Page 7

reacts to modifications made from elsewhere, forwarding the requests to the native
resource management system.

The lower half of the Adapter is specific to the underlying resource management system
and provides the actual link to the resource management system. In general, JNI
wrappers are utilized to communicate between the Java technology−based upper half
of the RMS Adapter and the native resource management system itself.

Examples of standard resource management systems include Sun Grid Engine and
Platform Computing’s LSF.

Application Agent Repository

The Application Agent repository is a JavaSpaces service instance which holds the
optional, application−specific evaluation code for execution by the queue services as well
as the results of the evaluation code run for each queue service.

Queues
Each registered queue service represents an underlying queue defined by a resource
management system on a specific compute resource. The compute resource being
managed by the resource management system may be either a single machine or a cluster
of machines. It is important to note that the queue service is intended simply as an
abstraction of the queue(s) which are generally part of the native resource management
system; there are no queue semantics implemented at the JAM level.

Before a queue service first registers itself with the Jini technology federation, it
performs a lookup to retrieve a reference to the Job Repository JavaSpaces service.
This reference is included in the queue service’s proxy object. This is noted in Figure 2.

Attributes of the underlying resource management system are reflected in the queue
service attributes in a resource manager−independent manner. It is these service
attributes which are matched against the resource parameters specified by the user to
determine the list of matching candidate queue services for a specific job, as shown in
Figure 3.

 Page 8

Figure 3: Queue filtering, Application submission

When submitting jobs for execution, each queue service proxy interacts with its
associated compute resource through the Job Repository. The queue service proxy writes
a new job description into the Job Repository to submit a job for execution. The RMS
Adapter has registered for notification of new job description entries being written into
the Job Repository and responds when so notified by submitting the job to the underlying
resource management system. It then updates the job description in the Job Repository
as the job’s state changes during its life cycle.

Each queue service back end is registered for notification of Application Agent
evaluation request arrival, at which point it copies the entry out of the Application Agent
repository, executes the code therein, and writes back a new entry, containing the results
for that queue service.

Jobs
Users can monitor and control their jobs once they have been submitted. Monitoring
includes the ability to browse the current state of the job’s execution (queued, running,
finished, etc.) and resource consumption in addition to being able to interact with the
job’s I/O. Control includes the ability to suspend or signal a running job and to restart a

 Page 9

Jini Federation
App Launch

Window

App Proxy

App Agent

App UI
Panel:

App Params
Res. Req’ts

Select One:
Queue A
Queue B
Queue C

Job Repository
JavaSpaces Service

" Client instantiates App UI Panel
" App proxy starts App agent
" User enters App Params; Res Req’ts
" App agent dynamically updates queue list
 based on user−supplied Res Req’ts; queue
 attributes
" User selects a queue to submit job
"App proxy directs queue proxy to write
 Job Description to Job repository

Queue C
proxy

RMS Adapter

JNI Wrapper

SunTM Grid
Engine

" Submitted Job Description triggers RMS
 Adapter notification
" RMS Adapter submits job to native RMS,
 starts job monitor thread

Job Monitor
Thread

running or completed job. In addition, optional steering hooks can be provided by the
application’s service wrapper to enable application−specific steering of the running job
as it executes. Application steering might, for example, involve dynamically changing
one or more application input parameters.

Each job submitted by JAM is represented by its own job service. How and when this
job service gets registered is now described. Reference Figure 4 in the following
discussion.

Figure 4: Job Service Creation

As mentioned in the discussion on queues, a job is submitted for execution by the queue
proxy writing a new job description to the Job Repository. The RMS Adapter receives a
notification when a new job description is written. The RMS Adapter submits the job to
the native resource management system and changes the state of the job description to
note that it has been queued. At this point, the job service back−end code, which had
previously registered for notification of queued jobs appearing in the Job Repository,
receives a notification and registers the job service, including a handle to the Job
Repository, as a Jini service.

Job monitoring and controlling functions also utilize the Job Repository. Once the job
service is registered, its service proxy is downloaded to the client (the client is discussed
 Page 10

Job Repository
JavaSpaces Service

RMS Adapter

JNI Wrapper

SunTM Grid
Engine

Job Service

Client

Queued

Jini Federation

Join

Job Monitor
Thread

Job Svc.
Proxy

Register for
events

Job Monitor
Panel

" Once job queued by native RMS,
 Job Description is modified
 in Job Repository
" This triggers Job Service back−end
 notification
" Back−end registers Job service with
 JiniTM federation

"Client receives notification on
 Job service registration, gets
 service proxy
"Job monitoring UI instantiated,
 proxy registers for it to receive
 status updates

further below) which had registered for notification of such job service registration when
the application was submitted. The job service proxy reads the job description from the
Job Repository in order to get job status information as well as a handle on the job’s stdio
(generally, a URL). The proxy modifies the job description in order to notify the queue
service back end of requests to change the job’s execution state (e.g. signal, restart). The
RMS Adapter has registered to receive notifications of these job description updates, and
responds by forwarding the request to the native resource management system. See
Figure 5.

Figure 5: JAM Job Monitoring and Control

Application Registry
A list of registered applications needs to be constructed and then updated as new
applications are added to JAM. The Application Registry serves as the persistent store
for this information. The persistence mechanism can be implemented using simple files,
or a database back−end, depending on the size of the registry. While it is tempting to
consider utilizing a persistent JavaSpaces service, this is not a recommended usage
pattern.

Administration
The JAM architecture supports two levels of administration: user and service. At the
 Page 11

Job Repository
JavaSpaces Service

RMS Adapter

JNI Wrapper

SunTM Grid
Engine

Client

Jini Federation

Job Monitor
Thread

Status
 Updates

Job Monitor
Panel

Kill
Suspend/Resume
Restart

user level, access control lists (ACLs) are used for controlling the following:

" Launching specific applications
" Submitting to specific queues
" Modifying the Application Registry (adding/changing/deleting applications)

At the service level, an administrator can monitor and control the overall operation of
JAM, including bringing services up or down, and monitoring the state of various
compute resources, running jobs, etc. Jini technology provides a set of interfaces to
support the administration of services. The Jini services used by JAM all implement
the appropriate administration interfaces, which provides the underpinnings of a service−
level administration implementation.

Client Code
This section describes the different front−end user interface panels with which a JAM
user interacts in the general order they will be encountered during a typical session. The
Jini technology provides the ability to run the client code from anywhere a unicast or
multicast connection to a Jini lookup service hosting JAM’s services can be
established.

Login

This is the first screen a user sees when invoking the JAM client. It is where the user is
authenticated to JAM through a standard user name and password dialog. The goal is to
provide a single sign−on model, where these initial credentials are securely saved and
forwarded as needed throughout the user’s session with JAM.

Application Selection

The client displays a list of all applications registered with the Jini lookup service. The
user selects one for submission.

Parameter Input, Queue Selection, Job Submission

Once the user selects an application, both application and resource parameters are
entered. The application proxy itself provides a panel for entering application−specific
parameters, while the client provides both a container for the application−supplied panel,
and its own panels for entering application−independent parameters and resource
parameters. Figure 6 shows a frame with the application proxy supplied panel at the top,
the resource parameter input panel in the middle, and the queue selection panel (along
with a panel for status messages) at the bottom.

As resource parameters are entered or modified and as the state of various queue services
change, a list of matching candidate queue services is displayed. This list is dynamically
updated by the Application Agent.

 Page 12

Figure 6: Parameter input, Queue selection window

 Page 13

Job Monitoring, Controlling, Steering

The application service proxy can optionally register for job monitoring to be performed
by the client. If this is the case, the client will be notified when the job service is
registered (which occurs after the job has been submitted to the native resource
management system). The client then displays the current execution state of the job
along with its stdout and stderr streams2 with both continuously updating as the job runs.
It also provides controls for signaling the job. This is shown in Figure 7.

Figure 7: Job Monitor Frame

2 Not all resource management systems support streaming stdout and stderr back to the job submitter.
In this case, JAM endeavors to get this information from files that such a resource manager might use
to store this information. In this case, the output might not be streamed to the window; in fact, the
output might not appear until the job has finished execution.

 Page 14

In addition, the user is optionally able to access application−specific steering hooks
which are provided as part of the application service. The application steering
architecture is still an area of active research.

Resource Monitoring

Resource monitoring is also available during queue selection, providing useful,
continually updated information about the current state of the selected resource. For
example, double−clicking on one of the queue service items as shown in Figure 6 will
result in a window as shown below in Figure 8.

Figure 8: Resource Monitoring

Summary
JAM provides a unifying framework for selecting and launching jobs into one of a set of
available resources. JAM’s architecture leverages the distributed nature of Jini and
JavaSpaces technologies to build a dynamic, distributed system. This allows us to
concentrate on JAM’s high−level architectural issues, as all the underlying distributed
infrastructure is provided by Jini and JavaSpaces technologies.

 Page 15

